
Dual-Arm Robots for Skilled Manufacturing

Applications

13th March 2014, Roveretto, Italy

Dual arm robots programming

D. Surdilovic, Fraunhofer – IPK

ERF2014 WORKSHOP

Objectives

 Programming is one of the two main bottlenecks for wider applications

of dual-arm robots in industry

 Ambituous framework to support :

 Task-oriented dual-arm robot programming (activities
decomposition: order, jobs, tasks, operations)

 Sensor-based robot control (force/torque control,
impedance, vision – look and move etc., force-vision)

 Interactive programming (gesture, voice, manual
guidance……..)

 Robust and flexible execution of complex
assembly/disassembly tasks (including contact
operations) in a structured, but uncertain
environment (compensate for robot/environemnt
errors/tolerances)

 Define robotic skills in terms of activities:

 Supports hierarchical decomposition,

 General purpose vs. specific activities (avoid teaching)

 Scaling

 Explicit/implicit, object-oriented programming

 Robotic-Language DARL - key approach

Interactive dual arm robot programming

INSTALL<facility A, subject i>

IN <facility B, subject j>

ASSEMBLY <water_pump> <dashboard>

REMOVE OPEN ▪ ▪ ▪

Higher complex activity

JOB, TASK

Lowest level of

activity

- Assigned to a sub-

system (device)

- Mapped to a system

ability (algorithm)

OPERATIONS

(ACTIONS)

APPROACH

ATTACH

RETRACT

MOVE

INSERT

LOCK

DETACH

PUSH

APPROACH_ATTACH <facility, subject>

MOVE_RELATIVE_TO

OPEN_GRIPPER

▪

▪

▪

Atomic activity PDL2 Robot/Motion Commands, New EXT-Commands

BACKGROUND FOR CONTROL/PROGRAMMING DEVELOPMENTBACKGROUND FOR CONTROL/PROGRAMMING DEVELOPMENT

Single Arm - Contact Operations (Actions)

HOLD, YIELD, LOCK, UNLOCK etc. (GET_CONTACT, APPLY_FORCE)

Dual-arm operations

non-coordinated

coordinated

goal-coordinated bimanual

symmetric asymmetric

congruent non-congruent

Jigless operations:

L: Action R: Action

HOLD INSERT

Why human performs mostly simplified dual-arm motion?

Bottleneck : planning (monitoring), not control

Simple planning and programming of

human-like bimanual motion

(„Callosum“ – control)

-Symetric/asymetric, congruent/non-

congruent motions

-Arms collision monitoring and

avoidance

Bimanual Operations

Jigless Operation Pure Bimanual

Operation

Dual-Arm Actions (Mimic Human Motion)

Bi-manual operations performed on a common object

Bi-Approach (Retract) Bi-Grasp (Release)

Bi-Insert (Extract)

Bi-Hinge

Dual-Arm Actions (Mimic Human Motion)

Bi-manual operations performed on a common object

Bi-Move

Bi-Slide

Bi-Hold

Bi-Yield

WORLD MODEL : ROBOT AND ENVIRONMENT FRAMESWORLD MODEL : ROBOT AND ENVIRONMENT FRAMES

Structured but uncertain environment

Action and Tasks Bi-Manual (Lego-Like)

Programming

Workerbot

High-Level Object-orinted dual-arm robot

programmimg language (C++)– Advanced frame for

dual-arm robot programming

lArm.setIMCOStatusBlocking(SYSTEM_STATUS_MONIT

ORING);

 lArm.setComplianceGains(gLowStiff);

 lArm.setComplianceFrame(CartPose());

 lArm.setIMCOStatusBlocking(SYSTEM_STATUS_R

UNNING);

biMovePTP(lOverFacility,

rOverFacility);

biExecuteBlocking();

Workerbot

BIBI--MANUALMANUAL--ACTIONS SUPPORTED BY DARLACTIONS SUPPORTED BY DARL

For example:

• biMovePTP(const JointPose& pl, const JointPose& pr, JointPose

jspd_l, JointPose jspd_r)

• biMoveTo(CartPose cl, CartPose cr, double spd_l, double spd_r)

• biApproachInsert(Subject& hl, Subject& hr, double

spd=APPROACHINSERT, Blend* blend=NULL, bool

openBlend=false)

• biInsert(Subject& hl, Subject& hr, double spd=INSERT)

• biPutSubjectTo(Subject& hl, Subject& hr, Blend* blend=NULL,

bool

• openBlend=false)

• biMove2Approach(Subject& sl, Subject& sr, double

spd_app=APPROACH, Blend* blend=NULL, bool openBlend=false)

BIBI--INSERTINSERT((SUBJECTSUBJECT& HL, & HL, SUBJECTSUBJECT& & HRHR, , DOUBLE DOUBLE SPDSPD=INSERT)=INSERT)

biInsert is resolved to:

CartPose cl = hl.getPose();

lArm. setComplianceGains(ENGAGE_CONFIG);

lArm.setComplianceFrame(CartPose())

lArm << MoveLin(cl);

CartPose cr = hr.getPose();

lArm. setComplianceGains(ENGAGE_CONFIG);

rArm.setComplianceFrame(CartPose())

rArm << MoveLin(cr);

CartPose cl = hl.getPose();

lArm. setComplianceGains(INSERT_CONFIG);

lArm.setComplianceFrame(CartPose() +Vector3(0,0,-d/2)))

lArm << MoveLin(cl);

CartPose cr = hr.getPose();

lArm. setComplianceGains(INSERT_CONFIG);

rArm.setComplianceFrame(CartPose()+Vector3(0,0,-d/2))

rArm << MoveLin(cr);

lArm.execute();

rArm.execute();

Engage

Insert

EFFICIENTEFFICIENT DUALDUAL--ARM ARM INSERTIONINSERTION ((INTERACTIONINTERACTION BETWEENBETWEEN TWOTWO COMPLIANTCOMPLIANT ARMSARMS))

Bimanual Contact Tasks Control

Single Arm/External (common object)/

Internal – impedance control

Sync A, B;

right_arm << move (p1) << A << move (p2) << move (p3) << B;

left_arm << move (p4) << B << move (p5) ;

l e f t_g r i p p e r << A << c l o s e () << B;

DUAL ARMS DUAL ARMS SYNCHRONIZATIONSYNCHRONIZATION

1) Short set-time in a for human designed

work-environment – Half-our

commissioning

2) Redundant arms programming and

control – Efficient handling of two arms

redundancy

3) Impedance and force control over all

control layers – First implementation of

programmable and configurable impedance

and force control for industrial robots

applications

4) Task-Level Programming – An old idea

becomes reality in dual-arm robots

DARL – Flexible framework for

programming dual-arm robots in C++

ROS – package (generalization)

Connection to DB (ontological)

To be published soon (April 2014)

